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Why is deep RL slow?1

Sample efficiency: the amount of data required for a learning
system to attain any chosen target level of performance.

1. Incremental parameter adjustment.
To maximize generalization and avoid overwriting earlier
learning, step-sizes in learning are usually small.

2. Weak inductive bias.
Bias-variance trade-off: A stronger bias requires less data,
while a weaker bias(sample-inefficient) can matter a wider
range of patterns.

1M. Botvinick, S. Ritter, J. X. Wang, et al., “Reinforcement Learning, Fast and Slow”,, vol. 23, no. 5, 2019.
doi: 10.1016/j.tics.2019.02.006. [Online]. Available: http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1016/j.tics.2019.02.006
http://creativecommons.org/licenses/by/4.0/


Episodic Memory

▶ Train: Keep an explicit record of past events, and use this
record directly as a point of reference in making new decisions.

▶ Test: Compare an internal representation of the current
situation with stored representations of past situations. The
action chosen is the one associated with the highest value.



MetaRL
▶ Meta: An ‘outer loop’that uses its experiences over many

task contexts to gradually adjust parameters that govern the
operation of an ‘inner loop’, so that the inner loop can
adjust rapidly to new tasks.

▶ MetaRL: Both the inner and outer loop implement RL
algorithms, learning from reward outcomes and optimizing
toward behaviors that yield maximal reward.

Figure 1: The outer loop aims at learning strong inductive biases that
enable the inner loop to rapidly solve novel tasks.



Fast Learning is enabled by slow learning.

Slow learning is
▶ In Episodic Memory, the gradual learning of useful state

representations to compute state similarity.
▶ In MetaRL, the dynamics of inner recurrent network slowly

updated across tasks.



Gaps between human and AI systems

▶ Rich task environments.
▶ Some inductive biases of human are acquired through

evolution and genetically, and others are acquired through
learning.

▶ How do AI systems explore and seek information?
▶ Does AI techniques like gradient descent learning respond to

some human mechanisms?



Early idea2

▶ In RL: πθ(st)→ a distribution over actions
▶ In meta-RL: πθ(at−1, rt−1, st)→ a distribution over actions

Figure 2: Learn the trajectory by LSTM. The observation is either a
one-hot vector or an embedding vector. π = policy, V = value
function.

2J. X. Wang, Z. Kurth-Nelson, D. Tirumala, et al., “Learning to reinforcement learn”,, 2016. arXiv:
1611.05763. [Online]. Available: http://arxiv.org/abs/1611.05763.

https://arxiv.org/abs/1611.05763
http://arxiv.org/abs/1611.05763


Early model: RL23

▶ Key idea: Take past trajectories as input and cast learning an
RL algorithm as a reinforcement learning problem.

▶ Optimization goal: Maximize the expected total discounted
reward accumulated across a fixed MDP.
How? Preserve the hidden state to the next episode, but not
t.he next trial.

▶ Use Gated Recurrent Units (GRUs) to avoid vanishing and
exploding gradients.

3Y. Duan, J. Schulman, X. Chen, et al., “FAST REINFORCEMENT LEARNING VIA SLOW
REINFORCEMENT LEARNING”, Tech. Rep., 2016. arXiv: 1611.02779v2.

https://arxiv.org/abs/1611.02779v2


Early model: RL2
▶ Input: Embedding of < s, a, r , d >, d is the determination

flag.
▶ Output: A distribution over actions.

ht+1, < st+1, at , rt , dt >→ ht+2, at+1

Figure 3: A trial consists of a series of episodes of interaction with a fixed
MDP.
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MetaRL Obejective

Consider a family of MDPs M = {Mi}Ni=1 which comprise a
distribution of tasks.
The goal of meta RL is to find a policy πθ and paired update
method U such that, when Mi ∼ M is sampled, πU(θ) solves Mi
quickly.

min
θ

∑
Mi

EπU(θ)
[LMi ]



Wavenet + soft attention4

RNNs only take last timestep as input, what about the whole
sequence?
Wavenet (Temporal convolutions)
▶ Pros: High bandwidth access to past timesteps rather than

keeping a linearly dependent hidden state:
p(x) =

∏T
t=1 p (xt | x1, . . . , xt−1).

▶ Cons: Coarser access to inputs that are further back in time.

Figure 4: Dilated causal convolutions.

4N. Mishra, M. Rohaninejad, X. Chen, et al., “A Simple Neural Attentive Meta-Learner”, arXiv , vol. abs/1707.0,
14 pp.–14 pp. 2017. arXiv: 1707.03141. [Online]. Available: http://arxiv.org/abs/1707.03141.

https://arxiv.org/abs/1707.03141
http://arxiv.org/abs/1707.03141


Wavenet + soft attention
How to help Wavenet focus on earlier timesteps?
Soft attention
▶ Pros: Pinpoint a specific piece of information from a

potentially infinitely-large context, which is viewed as an
unordered key-value store.

▶ Cons: Lack of positional dependence, fail to take the
sequential advantages of RL.

Figure 5: Take weighted addition of x as the input of LSTM.



Wavenet + soft attention
Why and how to combine Wavenet and soft attention?
Use temporal convolutions to produce the context over which we
use a causal attention operation.

Figure 6: Orange: TC layers; Green: Causal attention layers.



Meta-loss: MAML

▶ Key idea: Some internal representations are more transferable
than others. Try to encourage such general-purpose
representations.

▶ How? Maximizing the sensitivity of the loss functions of
new tasks with respect to the parameters. Namely, small
changes in the parameters will produce large improvements on
the loss function of any task.

▶ While optimizing θ, minimize the loss of updated parameter θ′
so that the velocity towards this task is maximized.

min
θ

∑
Ti∼p(T )

LTi

(
fθ′i
)
=

∑
Ti∼p(T )

LTi

(
fθ−α∇θLTi (fθ)

)



Meta-loss: MAML
Equation 4: LTi (fϕ) = −Ext ,at∼fϕ,qτi

[∑H
t=1 Ri (xt ,at)

]

Figure 7: Suitable for all models that update with gradient descent.



Meta-loss: Evolved policy gradients5

▶ Inner loop: RL trains on the loss function given by the outer
loop.

θ∗ = arg min
θ

Eτ∼M,πθ
[Lϕ (πθ, τ)]

▶ Outer loop: ES produce a learned loss that can train agents
faster with higher reward.

ϕ∗ = arg max
ϕ

EM∼p(M)Eτ∼M,πθ
[Rτ ]

▶ Key idea: Encode history trajectories in the design of loss
function

5R. Houthooft, R. Y. Chen, P. Isola, et al., “Evolved policy gradients”, Advances in Neural Information
Processing Systems, vol. 2018-Decem, no. 21, pp. 5400–5409, 2018, issn: 10495258. arXiv: 1802.04821.

https://arxiv.org/abs/1802.04821


Meta-loss: Evolved policy gradients

Outer loop update (ES):
▶ Why ES? We do not have

an analytical expression of
the reward of inner loop.

▶ Sample returns of V MDPs
to avoid consistently
choosing MDPs that always
generate higher returns.

ϕ← ϕ+δout ·
1

Vσ

V∑
v=1

F (ϕ+ σϵv ) ϵv

F (ϕ+ σϵv )

=
R(v−1)∗W/V+1+···+Rv∗W/V

W/V

Figure 8: Inner: gradient descent



Meta-reward: Inverse RL6

▶ Key idea: Learn a prior to infer possible reward functions from
demonstrations of new tasks.

▶ Motivation: Few-shot IRL needs prior indicating relevant
features between tasks. How to automatically learn the prior?

▶ Maximum Entropy Inverse RL

∇θLT (θ) =
∂rθ
∂θ

[Eτ [µτ ]− µDT ]

State Visitations: The expected number of times an agent will
visit each state.

6K. Xu, E. Ratner, A. Dragan, et al., “Learning a Prior over Intent via Meta-Inverse Reinforcement Learning”,
36th International Conference on Machine Learning, ICML 2019 , vol. 2019-June, pp. 12 036–12 050, 2018. arXiv:
1805.12573. [Online]. Available: http://arxiv.org/abs/1805.12573.

https://arxiv.org/abs/1805.12573
http://arxiv.org/abs/1805.12573


Meta-reward: Inverse RL

Figure 9: MaxEntIRL-Grad Figure 10: MAML using
MaxEntIRL-Grad instead of gradient
descent.



Meta-reward: Parameterized return7

▶ Key idea: Learn the return function by treating it as a
parametric function with tunable meta-parameters η, including
the discount factor γ, and the bootstrapping parameter λ.

gη (τt) = Rt+1 + γ(1− λ)vθ (St+1) + γλgη (τt+1)

▶ Optimization goal: Minimize MSE between value function and
gη(τ):

J(τ, θ, η) = (gη(τ)− vθ(S))2

▶ 1. maximize return; 2. approximate value function; 3. policy
regularization:

−∂J(τ, θ, η)
∂θ

=(gη(τ)− vθ(S))
∂ logπθ(A | S)

∂θ

+ b (gη(τ)− vθ(S))
∂vθ(S)
∂θ

+ c ∂H (πθ(· | S))
∂θ

7Z. Xu, H. van Hasselt, and D. Silver, “Meta-Gradient Reinforcement Learning”, Advances in Neural
Information Processing Systems, vol. 2018-Decem, pp. 2396–2407, 2018. arXiv: 1805.09801. [Online]. Available:
http://arxiv.org/abs/1805.09801.

https://arxiv.org/abs/1805.09801
http://arxiv.org/abs/1805.09801


Meta-reward: Parameterized return
1. Update the parameters θ to θ′ on a sample of experience τ by

∂J(τ,θ,η)
∂θ .

2. Update meta-parameters η according to the gradient of the
meta-objective:

∆η = −β∂J ′ (τ ′, θ′, η′)

∂θ′
z ′

z ′ = µz +
∂f (τ, θ, η)

∂η
≈ dθ

dη

∂f (τ, θ, η)
∂η

= α
∂gη(τ)
∂η

[
∂ logπθ(A | S)

∂θ
+ c ∂vθ(S)

∂θ

]

∂J ′ (τ ′, θ′, η′)

∂θ′
=

(
gη′

(
τ ′
)
− vθ′

(
S ′)) ∂ logπθ′ (A′ | S ′)

∂θ′
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Memory Table8

Keep a table QEC (s, a) that contains the highest return ever
obtained by taking action a from state s.
▶ Update at the end of each episode:

QEC (st , at) ←
{

Rt if (st , at) /∈ QEC

max
{

QEC (st , at) ,Rt
}

otherwise

▶ When we need to use the table,

Q̂EC(s, a) =
{

1
k
∑k

i=1 QEC (
s(i), a

)
if (s, a) /∈ QEC

QEC(s, a) otherwise

▶ Use VAE to extract salient features of the state space.
▶ Use LRU to fix the memory size.

8C. Blundell, B. Uria, A. Pritzel, et al., “Model-Free Episodic Control”,, 2016. arXiv: 1606.04460. [Online].
Available: http://arxiv.org/abs/1606.04460.

https://arxiv.org/abs/1606.04460
http://arxiv.org/abs/1606.04460


Memory Table

Figure 11: Take action according to Q̂EC and update it after a whole
episode.



Episodic MetaRL910

▶ Meta Learning: Capitalizing on shared structure to learn
faster with each new task.

▶ Episodic Memory: Avoid exploration when a task reoccurs.
▶ LSTM design: Adding a reinstatement gate to balance the

weight of memory table DND.
▶ DND design: Take context embedding as the key and the final

cell state as the value.

Figure 12: Episodic LSTM.

9S Ritter, J. X. Wang, Z Kurth-Nelson, et al., “Episodic Control as Meta-Reinforcement Learning”,, doi:
10.1101/360537. [Online]. Available: https://doi.org/10.1101/360537.

10S. Ritter, J. X. Wang, Z. Kurth-Nelson, et al., “Been There, Done That: Meta-Learning with Episodic Recall”,
Tech. Rep., 2018. arXiv: 1805.09692v2.

https://doi.org/10.1101/360537
https://doi.org/10.1101/360537
https://arxiv.org/abs/1805.09692v2


Episodic MetaRL

ct = it ◦ cin + ft ◦ ct−1 + rt ◦ cep

Figure 13: Adding a reinstatement gate to LSTM for episodic memory.
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Structured Exploration Strategies11

▶ Motivation: Temporally coherent randomness is dismissed
when adding noise independently at each time step.

▶ Key idea: Condition the policy on per-episode random
variables drawn from a learned latent distribution.

Figure 14: Structured stochasticity: latent variable z ∼ N(µ, σ) is
sampled once per episode. µ, σ are learnable parameters.

11A. Gupta, R. Mendonca, Y. Liu, et al., “Meta-Reinforcement Learning of Structured Exploration Strategies”,
Tech. Rep., 2018. arXiv: 1802.07245v1.

https://arxiv.org/abs/1802.07245v1


Structured Exploration Strategies

Figure 15: Each task has per-task
variational parameters θ′i , µ

′
i , σ

′
i .

Meta-training involves optimizing:
1. initial policy parameters that are
shared by all tasks; 2. per-task
(µi , σi).

Figure 16: Meta-training optimizes
for post-update rewards, so MAESN
= MAML + structured noise. KL
divergence aims to push the
Gaussian distribution to the latent
variable prior, which is simply a unit
Gaussian.



E-MAML12

▶ Key idea: The best exploration would be a policy that
generates the most informative samples for identifying the
task.

▶ Samples τ̄ drawn under πθ will impact the final returns R(τ)
by influencing the initial update U(θ, τ̄). So we modify the
expectation as: ∫∫

R(τ)πU(θ,τ̄)(τ)πθ(τ̄)dτ̄dτ

Thus, the initial samples τ̄ are encouraged to cover the state
space enough to ensure that the update U(θ, τ̄) is maximally
effective.

1

T

T∑
i=1

R
(
τ i) ∂

∂θ
logπθ

(
τ̄ i)∣∣∣∣∣

τ̄ i∼πθ,τ i∼πU(θ,τ̄)

12B. C. Stadie, G. Yang, R. Houthooft, et al., “Some Considerations on Learning to Explore via
Meta-Reinforcement Learning”, Advances in Neural Information Processing Systems, vol. 2018-Decem,
pp. 9280–9290, 2018. arXiv: 1803.01118. [Online]. Available: http://arxiv.org/abs/1803.01118.

https://arxiv.org/abs/1803.01118
http://arxiv.org/abs/1803.01118


E-MAML

Figure 17: U = stochastic gradient descent. E-MAML changes the
deterministic update of θ in MAML into a stochastic method.



E-RL2

▶ Key idea: Consider the impact of its initial sampling
distribution on its final returns.

▶ Call the rollouts that help account for the impact of this initial
sampling distribution Explore-rollouts. Call rollouts that do
not account for this dependence Exploit-rollouts.

▶ Graident computation will only get rewards provided by
Exploit-Rollouts.

▶ During Explore-rollouts the policy will take actions which may
not lead to immediate rewards but rather to the RNN hidden
weights that perform better system. identification.



Meta-reward for exploration policy13

▶ Motivation: Adding noise is restricted to local region
exploration. How to explore globally?

▶ Meta reward is used to judge the improvement of exploration
policy compared with the original policy.

R̂ (D0) = R̂π′ − R̂π

▶ Teacher-student framework: Teacher is a meta-learner that
offers an exploration policy πe . Student is a DDPG(Deep
Deterministic Policy Gradient) network learning new policy π′

and help update teacher using meta reward:

max
θπ
{J (θπ) := Es∼B [Qθ (s, µ (s, θπ))]}

13T. Xu, Q. Liu, L. Zhao, et al., “Learning to Explore with Meta-Policy Gradient”,, 2018. arXiv: 1803.05044.
[Online]. Available: http://arxiv.org/abs/1803.05044.

https://arxiv.org/abs/1803.05044
http://arxiv.org/abs/1803.05044


Meta-reward for exploration policy

Figure 18: Teacher and student learn from each other and update at each
iteration. So does the replay buffer B = {sj , aj , rj , sj+1}.
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Learn diversified skills14

▶ Motivation: Learning skills without reward, especially for cases
where reward is sparse or requires human feedback.

▶ Optimization goal: Train the skills so that they maximize
coverage over the set of possible behaviors. Use
discriminability between skills as an objective.

▶ Key idea:
1. Use state instead of actions to distinguish skills.
2. Encourage randomness in actions so that skills with high

entropy explore a part of the state space far away from other
skills.

14B. Eysenbach, A. Gupta, J. I. Google, et al., “DIVERSITY IS ALL YOU NEED: LEARNING SKILLS
WITHOUT A REWARD FUNCTION”, Tech. Rep., 2018. arXiv: 1802.06070v6. [Online]. Available:
https://sites.google.com/view/diayn/.

https://arxiv.org/abs/1802.06070v6
https://sites.google.com/view/diayn/


Learn diversified skills
Objective function

F(θ) ≜ I(S;Z ) +H[A | S]− I(A;Z | S)
= (H[Z ]−H[Z | S]) +H[A | S]− (H[A | S]−H[A | S,Z ])

= H[Z ]−H[Z | S] +H[A | S,Z ]

1. Prior distribution over skills should have high entropy.
2. It should be easy to infer the skill z from the current state.
3. Each skill should act as randomly as possible,
F(θ) = H[A | S,Z ]−H[Z | S] +H[Z ]

= H[A | S,Z ] + Ez∼p(z),s∼π(z)[log p(z | s)]− Ez∼p(z)[log p(z)]
≥ H[A | S,Z ] + Ez∼p(z),s∼π(z) [log qϕ(z | s)− log p(z)] ≜ G(θ, ϕ)

Approximate this posterior p(z | s) with a learned discriminator
qϕ(z | s)



Learn diversified skills

Figure 19: Discriminator wants to better infer the skill z from states
visited. Skill learner wants to visit states that are easy to discriminate.



Mutual information reward15

▶ Goal: Produce an environment-specific learning algorithm f
that can quickly learn an optimal policy π∗

r (a | s) for any
reward function r .

▶ DIAYN optimizes mutual information by training a
discriminator network Dϕ(z |s) that predicts which skill z was
used to generate the given states. Define the reward function:
rz(s) = log Dϕ(z |s)

▶ Apply the reward function rz(s) to a meta-learner, e.g.
MAML.

Figure 20: A task z is sampled at each iteration.
15A. Gupta, B. Eysenbach, C. Finn, et al., “Unsupervised Meta-Learning for Reinforcement Learning”,, 2018.

arXiv: 1806.04640. [Online]. Available: http://arxiv.org/abs/1806.04640.

https://arxiv.org/abs/1806.04640
http://arxiv.org/abs/1806.04640


Environment generation16

▶ Key idea: Maintain a list of active environment-agent pairs
EA_List that begins with a single starting pair (a simple
environment, a randomly initialized weight vector).

▶ Generate new environment: Randomly perturb the encoding
(parameter vector) of an active environment.

▶ Optimize the paired agents: Evolution Strategies are applied
to the optimization of θm of each active environment Em.

▶ Transfer attempts: To improve local optimum problem,
transfer parameters between active environments.

Figure 21: Transfer attempts.
16R. Wang, J. Lehman, J. Clune, et al., “Paired Open-Ended Trailblazer (POET): Endlessly Generating

Increasingly Complex and Diverse Learning Environments and Their Solutions”, Tech. Rep., 2019. arXiv:
1901.01753v3.

https://arxiv.org/abs/1901.01753v3


Environment generation

Figure 22: Three steps 1.generation; 2.optimization; 3.transferring
parameters for each iteration.



Model-based meta-adapt17

Motivation: Considers each timestep to potentially be a new task,
e.g. accidental disturbance. Meta-adapt:

min
θ,ψ

EτE(t−M,t+K)∼D
[
L
(
τE(t, t + K ),θ′E

)]
s.t.: θ′E = uψ (τE(t −M, t − 1),θ)

▶ Shorten the time range from a whole trajectory D to K
timesteps.

▶ L
(
τE(t, t + K ),θ′E

)
≜ − 1

K
∑t+K

k=t log p̂θ′E (sk+1 | sk ,ak)

17A. Nagabandi, I. Clavera, S. Liu, et al., “Learning to Adapt in Dynamic, Real-World Environments Through
Meta-Reinforcement Learning”, arXiv preprint, 2018. arXiv: 1803.11347. [Online]. Available:
http://arxiv.org/abs/1803.11347.

https://arxiv.org/abs/1803.11347
http://arxiv.org/abs/1803.11347


Model-based meta-adapt

Figure 23: Adaptation is realized with MAML gradient descent.
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Tracking: Meta Model Predictor18

▶ Siamese: Learn a feature embedding, and find the image
region most similar to the target template.
Cons: Ignore background appearance information.

▶ Differential online classifier: Distinguish the target object from
the background.
Cons: Online but not end-to-end.

▶ Common disadvantage: Rely on pre-trained features for image
classification or similarity measure, no update potential while
meeting unfamiliar object tracking tasks.

Key idea: Discriminate between the target and background after
few iterations. We need to reduce optimization recursions.

18G. Bhat, M. Danelljan, L. Van Gool, et al., “Learning discriminative model prediction for tracking”, arXiv ,
2019.



Tracking: Meta Model Predictor
▶ Initializer: conv + ROI pooling (Input: target appearance)
▶ Optimizer

▶ Discriminative learning loss design
▶ Steepest descent with variant learning rate
▶ Automatically learn all free parameters in the loss

Figure 24: Target classification branch learns the weights f of a
convolutional layer that predicts score distribution given a feature map.
Bounding box branch is omitted.



Discriminative Learning Loss
Input: Strain = {(xj , cj)}nj=1 contains feature maps and center
coordinates of the target.

L(f ) = 1

|Strain |
∑

(x ,c)∈Strain

∥r(x ∗ f , c)∥2 + ∥λf ∥2

Here, residual r(s, c) = s − yc , where yc is the desired target score
at each location.
Note the data imbalance between target and background, we
define s = max(0, x ∗ f ) in the background region. Thus, s will
not become large negative values that have too much impact on
the loss. Target region remains the same due to imbalance.

r(s, c) = vc · (mcs + (1−mc)max(0, s)− yc)

To separate background and target region, and to alleviate data
imbalance, we introduce space weight vector vc and mask mc :



Steepest descent

To speed up gradient descent, methods like MAML would take the
gradient direction which minimizes the loss of next classifier
f (i+1) = f (i) − α∇L

(
f (i)

)
.

We approximate the loss of next classifier as:

L(f ) ≈ L̃(f ) =1

2

(
f − f (i)

)T
Q(i)

(
f − f (i)

)
+(

f − f (i)
)T
∇L

(
f (i)

)
+ L

(
f (i)

)

α =
∇L

(
f (i)

)T∇L
(
f (i)

)
∇L

(
f (i)

)T Q(i)∇L
(
f (i)

)
When Q(i) = 1

β I, we have a constant learning rate α = β.



Steepest descent

Let J (i) be the Jacobian of residuals at f (i). Here, only first-order
derivatives are involved. Let Q(i) = (J (i))⊤J (i).

Figure 25: We have now built the whole target classifier branch. It
transforms a frame into feature maps and outputs the score distribution
regarding the target.



Auto-learning parameters

We have three free parameters in loss design: the label confidence
scores yc , the spatial weight function vC , and the target mask mc .
Suppose current position is t:

yc(t) =
N−1∑
k=0

ϕy
kρk(∥t − c∥)

We parameterize them similarly with coefficients ϕk . d − k∆
represents locations of different distance from the center.

ρk(d) =
{

max
(
0, 1− |d−k∆|

∆

)
, k < N − 1

max
(
0,min

(
1, 1 + d−k∆

∆

))
, k = N − 1



Machine Theory of Mind19

▶ Motivation from cognitive psychology: We understand
another agent based on models representing the mental states
of others.

▶ Agents: Ai = (Ωi , ωi ,Ri , γi , πi) whose policies are not
necessarily optimal.

▶ Observer (to be learned): τ
(obs)
ij =

{(
x (obs)

t , a(obs)
t

)}T

t=0

▶ From meta-learning perspective:
▶ General case: Multiple trajectories for one reward, train on

tasks of different rewards, test on adaptability to various tasks.
▶ ToM case: Multiple agents for one species, train on different

species, test on adaptability to various species.

19N. C. Rabinowitz, F. Perbet, H. F. Song, et al., “Machine Theory of mind”, 35th International Conference on
Machine Learning, ICML 2018 , vol. 10, pp. 6723–6738, 2018. arXiv: 1802.07740.

https://arxiv.org/abs/1802.07740


Machine Theory of Mind
Goal: Predictions about future behaviour
▶ Action prediction: next-step action probabilities
▶ Goal prediction: probabilities of whether certain objects will

be consumed
▶ State sequence prediction: successor representations(the

expected discounted state occupancy)

Figure 26: Here recent trajectory usually means the current episode. Past
trajectory is highly adjustable.



Random policy agent

Figure 27: When given a mixture of species, ToMnet implicitly learns to
perform hierarchical inference.



Goal-driven policy agent

Figure 28: When Npast = 0, ToMnet learns shared policies of some states.
When increasing Npast, preferences for the goal is learned.



Sally-Anne test

Figure 29: ToMnet is able to detect the belief change of the agent.
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